GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Physics, Frontiers Media SA, Vol. 10 ( 2022-7-12)
    Abstract: Conventional von Newmann-based computers face severe challenges in the processing and storage of the large quantities of data being generated in the current era of “big data.” One of the most promising solutions to this issue is the development of an artificial neural network (ANN) that can process and store data in a manner similar to that of the human brain. To extend the limits of Moore’s law, memristors, whose electrical and optical behaviors closely match the biological response of the human brain, have been implemented for ANNs in place of the traditional complementary metal-oxide-semiconductor (CMOS) components. Based on their different operation modes, we classify the memristor family into electronic, photonic, and optoelectronic memristors, and review their respective physical principles and state-of-the-art technologies. Subsequently, we discuss the design strategies, performance superiorities, and technical drawbacks of various memristors in relation to ANN applications, as well as the updated versions of ANN, such as deep neutral networks (DNNs) and spike neural networks (SNNs). This paper concludes by envisioning the potential approaches for overcoming the physical limitations of memristor-based neural networks and the outlook of memristor applications on emerging neural networks.
    Type of Medium: Online Resource
    ISSN: 2296-424X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2721033-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...