GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Molecular Biosciences, Frontiers Media SA, Vol. 8 ( 2021-4-22)
    Abstract: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) has been shown to play a pivotal role in the regulation of mitochondrial biogenesis in diseases. Resveratrol (RSV), a natural polyphenolic reagent, has powerful antioxidant properties and the ability to scavenge mitochondrial reactive oxygen species (ROS) in a variety of central nervous system diseases. However, the underlying molecular mechanisms of RSV on mitochondrial biogenesis in early brain injury (EBI) following subarachnoid hemorrhage (SAH) remain poorly understood. This study aimed to explore the potential neuroprotective effects of RSV on mitochondrial biogenesis and function by activation of the PGC-1α signaling pathway in a prechiasmatic cistern SAH model. PGC-1α expression and related mitochondrial biogenesis were detected. Amounts of nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) were determined to evaluate the extent of mitochondrial biogenesis. Increased PGC-1α and mitochondrial biogenesis after SAH were observed in the temporal cortex. Resveratrol increased the expression of PGC-1α, NRF1, and TFAM, and promoted PGC-1α nuclear translocation. Moreover, RSV could scavenge excess ROS, increase the activity of superoxide dismutase (SOD), enhance the potential of mitochondrial membrane and ATP levels, reduce the number of mitochondrial DNA copy, and decrease the level of malondialdehyde (MDA). RSV significantly ameliorated the release of apoptosis-related cytokines, namely P53, cleaved caspase-3, cytochrome c, and BAX, leading to the amelioration of neuronal apoptosis, brain edema, and neurological impairment 24 h after SAH. These results indicate that resveratrol promotes mitochondrial biogenesis and function by activation of the PGC-1α signaling pathway in EBI following SAH.
    Type of Medium: Online Resource
    ISSN: 2296-889X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2814330-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...