GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Future Medicine Ltd ; 2014
    In:  Regenerative Medicine Vol. 9, No. 3 ( 2014-05), p. 309-326
    In: Regenerative Medicine, Future Medicine Ltd, Vol. 9, No. 3 ( 2014-05), p. 309-326
    Abstract: Aim: To develop a biomimetic polymeric injectable hydrogel that can support nucleus pulposus (NP) regeneration. Materials & methods: Natural polymer-based hydrogels were synthesized using fibrinogen (FBG) and hyaluronic acid (HA), conjugated by a novel two-step procedure. Bovine NP cells were cultured in FBG–HA conjugate-based 3D beads in vitro and in a nucleotomized organ culture model. Results: FBG–HA conjugate-based hydrogels prepared with 235 KDa HA at a FBG/HA w/w ratio of 17:1 showed superior gel stability and mechanical properties and markedly increased glycosaminoglycan synthesis compared with a FBG/HA mixture-based hydrogels or fibrin gels. Gene-expression levels of NP markers were maintained in vitro. In organ culture, NP cells seeded in FBG–HA conjugate-based hydrogels showed better integration with native NP tissue compared with fibrin gels. Moreover, FBG–HA conjugate-based hydrogels restored compressive stiffness and disc height after nucleotomy under dynamic load. Conclusion: Specific FBG–HA conjugate-based hydrogels may be suitable as injectable materials for minimally invasive, biological NP regeneration.
    Type of Medium: Online Resource
    ISSN: 1746-0751 , 1746-076X
    Language: English
    Publisher: Future Medicine Ltd
    Publication Date: 2014
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...