GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2010
    In:  Water Environment Research Vol. 82, No. 11 ( 2010-11), p. 2279-2284
    In: Water Environment Research, Wiley, Vol. 82, No. 11 ( 2010-11), p. 2279-2284
    Abstract: The goal of this study was to synthesize use of hydroxyapatite as a high‐efficiency adsorbent for Ni(II) ions, and to study its adsorption behavior. Three tests— Fourier‐transform infrared spectroscopy, transmission electron microscopy, and Brunauer‐Emmett‐Teller —were carried out to determine the chemical functionality of the hydroxyapatite powders, to observe its crystal morphology, and to measure the specific surface area. Results indicate that proves the n‐HA synthesized by chemical precipitation is an effective adsorbent for the removal of Ni(II) ions from water solution. The synthesized, needle‐like nano‐hydroxyapatite (n‐HA) have a uniform average size of 31.9 × 21.3nm, a large specific surface area (135 m 2 /g), and typically is a weak crystal with a broad pore distribution. The adsorption isotherm shows the Langmuir model is applicable only when the initial Ni 2+ concentration is lower than 0.1 mol/L. Multilayer adsorption was attributed to uneven pore distribution that occurred at higher Ni 2+ concentration. The adsorption of Ni 2+ onto n‐HA was attributed to electrostatic attraction, ion exchange, and dissolution‐precipitation reaction. As the result, Ni 2+ substitutes Ca 2+ and binds with the oxygen atom on the surface, which resulted from the change in crystal‐phase composition and in the binding energy of surface elements of n‐HA before and after adsorption.
    Type of Medium: Online Resource
    ISSN: 1061-4303 , 1554-7531
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 1098976-6
    detail.hit.zdb_id: 2051010-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...