GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Society for Neuroscience ; 2005
    In:  The Journal of Neuroscience Vol. 25, No. 22 ( 2005-06-01), p. 5351-5355
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 25, No. 22 ( 2005-06-01), p. 5351-5355
    Abstract: Primary early-onset generalized dystonia is an autosomal dominant disorder caused by a deletion (ΔGAG) in the DYT1 gene encoding torsinA. The gene defect has incomplete penetrance, with ∼30% of carriers developing clinically evident dystonia. We describe lines of transgenic mice that express either human mutant torsinA (hMT) or human wild-type (hWT) torsinA. All mice demonstrated moderately increased levels of torsinA in the brain by Western blot analysis and normal subcellular distribution of torsinA in neurons by confocal microscopy. No animals had dystonic features. However, mice overexpressing hMT, but not hWT, torsinA displayed a reduced ability to learn motor skills in an accelerating rotarod paradigm. This pattern resembles the impaired motor sequence learning demonstrated in human nonmanifesting carriers of the ΔGAG mutation. Open-field testing showed no differences in spontaneous activity between transgenic mice and their nontransgenic littermates, indicating that mice overexpressing hMT torsinA did not develop overtly abnormal motor behavior. Together, these data suggest that these transgenic mice provide a useful model of the ΔGAG carrier state that can be used to probe genetic and environmental factors that can trigger the dystonic state.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2005
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...