GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Company of Biologists ; 2006
    In:  Journal of Cell Science Vol. 119, No. 4 ( 2006-02-15), p. 671-679
    In: Journal of Cell Science, The Company of Biologists, Vol. 119, No. 4 ( 2006-02-15), p. 671-679
    Abstract: Keratinocyte differentiation, adhesion and motility are directed by extracellular Ca2+ concentration increases, which in turn increase intracellular Ca2+ levels. Normal keratinocytes, in contrast to most non-excitable cells, require Ca2+ release from both Golgi and endoplasmic reticulum Ca2+ stores for efficient Ca2+ signaling. Dysfunction of the Golgi human secretory pathway Ca2+-ATPase hSPCA1, encoded by ATP2C1, abrogates Ca2+ signaling and causes the acantholytic genodermatosis, Hailey-Hailey disease. We have examined the role of the endoplasmic reticulum Ca2+ store, established and maintained by the sarcoplasmic and endoplasmic reticulum Ca2+-ATPase SERCA2 encoded by ATP2A2, in Ca2+ signaling. Although previous studies have shown acute SERCA2 inactivation to abrogate Ca2+ signaling, we find that chronic inactivation of ATP2A2 in keratinocytes from patients with the similar acantholytic genodermatosis, Darier disease, does not impair the response to raised extracellular Ca2+ levels. This normal response is due to a compensatory upregulation of hSPCA1, as inactivating ATP2C1 expression with siRNA blocks the response to raised extracellular Ca2+ concentrations in both normal and Darier keratinocytes. ATP2C1 inactivation also diminishes Darier disease keratinocyte viability, suggesting that compensatory ATP2C1 upregulation maintains viability and partially compensates for defective endoplasmic reticulum Ca2+-ATPase in Darier disease keratinocytes. Keratinocytes thus are unique among mammalian cells in their ability to use the Golgi Ca2+ store to mediate Ca2+ signaling.
    Type of Medium: Online Resource
    ISSN: 1477-9137 , 0021-9533
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2006
    detail.hit.zdb_id: 219171-4
    detail.hit.zdb_id: 1483099-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...