GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Journal of Neuroinflammation Vol. 20, No. 1 ( 2023-06-21)
    In: Journal of Neuroinflammation, Springer Science and Business Media LLC, Vol. 20, No. 1 ( 2023-06-21)
    Abstract: Autoimmune uveitis (AU) is the most common ophthalmic autoimmune disease (AD) and is characterized by a complex etiology, high morbidity, and high rate of blindness. AU remission has been observed in pregnant female patients. However, the effects of progesterone (PRG), a critical hormone for reproduction, on the treatment of AU and the regulatory mechanisms remain unclear. Methods To this end, we established experimental autoimmune uveitis (EAU) animal models and constructed a high-dimensional immune atlas of EAU-model mice undergoing PRG treatment to explore the underlying therapeutic mechanisms of PRG using single-cell RNA sequencing. Results We found that PRG ameliorated retinal lesions and inflammatory infiltration in EAU-model mice. Further single-cell analysis indicated that PRG reversed the EAU-induced expression of inflammatory genes (AP-1 family, S100a family, and Cxcr4 ) and pathological processes related to inflammatory cell migration, activation, and differentiation. Notably, PRG was found to regulate the Th17/Treg imbalance by increasing the reduced regulatory functional mediators of Tregs and diminishing the overactivation of pathological Th17 cells. Moreover, the Id2/Pim1 axis, IL-23/Th17/GM-CSF signaling, and enhanced Th17 pathogenicity during EAU were reversed by PRG treatment, resulting in the alleviation of EAU inflammation and treatment of AD. Conclusions Our study provides a comprehensive single-cell map of the immunomodulatory effects of PRG therapy on EAU and elaborates on the possible therapeutic mechanisms, providing novel insights into its application for treating autoimmune diseases.
    Type of Medium: Online Resource
    ISSN: 1742-2094
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2156455-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...