GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: BMC Genomics, Springer Science and Business Media LLC, Vol. 24, No. 1 ( 2023-07-20)
    Abstract: The global dairy industry is currently facing the challenge of heat stress (HS). Despite the implementation of various measures to mitigate the negative impact of HS on milk production, the cellular response of dairy cows to HS is still not well understood. Our study aims to analyze transcriptomic dynamics and functional changes in the liver of cows subjected to heat stress (HS). To achieve this, a total of 9 Holstein dairy cows were randomly selected from three environmental conditions - heat stress (HS), pair-fed (PF), and thermoneutral (TN) groups - and liver biopsies were obtained for transcriptome analysis. Results Both the dry matter intake (DMI) and milk yield of cows in the HS group exhibited significant reduction compared to the TN group. Through liver transcriptomic analysis, 483 differentially expressed genes (DEGs) were identified among three experimental groups. Especially, we found all the protein coding genes in mitochondria were significantly downregulated under HS and 6 heat shock proteins were significant upregulated after HS exposure, indicating HS may affect mitochondria integrity and jeopardize the metabolic homeostasis in liver. Furthermore, Gene ontology (GO) enrichment of DEGs revealed that the protein folding pathway was upregulated while oxidative phosphorylation was downregulated in the HS group, corresponding to impaired energy production caused by mitochondria dysfunction. Conclusions The liver transcriptome analysis generated a comprehensive gene expression regulation network upon HS in lactating dairy cows. Overall, this study provides novel insights into molecular and metabolic changes of cows conditioned under HS. The key genes and pathways identified in this study provided further understanding of transcriptome regulation of HS response and could serve as vital references to mitigate the HS effects on dairy cow health and productivity.
    Type of Medium: Online Resource
    ISSN: 1471-2164
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2041499-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...