GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2020
    In:  Transportation Research Record: Journal of the Transportation Research Board Vol. 2674, No. 6 ( 2020-06), p. 151-162
    In: Transportation Research Record: Journal of the Transportation Research Board, SAGE Publications, Vol. 2674, No. 6 ( 2020-06), p. 151-162
    Abstract: Accurate characterization of the resilient behavior of the base course materials under different climatic conditions is critical for the design of reliable and cost-effective pavement structures. In Alaska, the resilient behavior of base course materials usually undergoes significant variation due to seasonal change and extreme climatic conditions. Previous studies have revealed that the resilient behavior of base course materials could be significantly influenced by the freezing process. In this study, the freezing process under two extreme conditions (i.e., free and no water access conditions) that base course materials could possibly experience in the field was simulated using a one-dimensional frost heave cell. The influences of the water access condition during freezing on the frost heave and resilient modulus (M R ) of the base course materials with different fines and initial water contents was assessed based on the results from the freezing process and repeated load triaxial tests. A pressure plate test was also performed to build the relationship between suction and water content of soils with different fines content. Suction was then introduced to model M R of the materials tested under unfrozen conditions before and after a freeze–thaw cycle. The adoption of suction significantly simplified the equation for M R prediction. Finally, structural analyses were conducted using BISAR and Alaska Flexible Pavement Design (AKFPD) software and the results revealed that free water access during freezing can significantly accelerate cracking and reduce pavement service life.
    Type of Medium: Online Resource
    ISSN: 0361-1981 , 2169-4052
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2020
    detail.hit.zdb_id: 2403378-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...