GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Atmospheric and Oceanic Technology Vol. 37, No. 7 ( 2020-07-01), p. 1289-1304
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 37, No. 7 ( 2020-07-01), p. 1289-1304
    Abstract: Wave measurements retrieved by Sentinel-1A level-2 ocean (OCN) products are sensitive to swells other than wind seas, and are considered to provide a finer resolution of ocean swells. To assess the capability of swell retrieval globally, OCN products are validated against WAVEWATCH III (WW3) wave spectra for two available incidence angles [“wave mode” (WV); WV1: 23°; WV2: 36°], focused on the integral wave parameters and most energetic wave system of Sentinel-1A . The wave parameter difference between Sentinel-1A and WW3 along antenna look angles for WV1 demonstrates the obvious impact of the nonlinearity influence in the azimuth direction, resulting in an unrealistically high wave height at the low wave frequency, and the spurious split of wave systems in the range direction, due to the vanishing of velocity bunching modulation. WV2 is less pronounced in these two aspects, but tends to shift wave energy to a higher wave frequency in the range direction. The inside discrepancy of wave energy has two noticeable features: the difference in peak wavelengths in the wave spectrum is positively clustered in the azimuth direction and negatively clustered in the range direction; some of the most energetic partitions derived from Sentinel-1A are difficult to assign to any wave systems in WW3. This phenomenon could be related to wind-wave coupling as the azimuth cutoff/WW3 peak wavelength is confined to a ratio below 0.5 for the negative difference between Sentinel-1A and WW3 peak wavelengths and the spectral distance of most energetic wave system in Sentinel-1A highly resembles “swell pools.”
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...