GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Journal of Climate Vol. 20, No. 6 ( 2007-03-15), p. 1035-1052
    In: Journal of Climate, American Meteorological Society, Vol. 20, No. 6 ( 2007-03-15), p. 1035-1052
    Abstract: A 260-yr-long coupled general circulation model (CGCM) simulation is used to investigate the interaction between ENSO mode and near-annual variability and its sensitivity to the equatorial background mean stratification and seasonal cycles. Although the thermocline mean vertical structure of the model favors the high-order baroclinic modes that are associated with the slow time scales of the coupled variability, the simulated ENSO oscillates at a dominant quasi-biennial frequency. Biases of the climatological velocity field are favorable to the dominance of the zonal advective feedback over the thermocline feedback, the model exhibiting an overenergetic westward seasonal zonal current in the central-western equatorial Pacific, and an upwelling rate that is about half the observations. This sets the conditions for the enhancement of a near-annual mode that is observed to oscillate at an 8-month period in the model. Using an intermediate coupled model of the tropical Pacific where the climatological fields are prescribed to the ones derived from the CGCM, it is demonstrated that the quasi-biennial ENSO variability simulated by the CGCM is mostly due to the biases in the climatological currents of the CGCM. These biases favor the dominance of the fast “zonal advective feedback” over the slow “thermocline feedback” in the coupled system and enhance a fast coupled basin mode. This fast mode differs from the theoretical Pacific Ocean basin mode in that, besides mean temperature advection by the zonal current anomalies, it is also driven by anomalous temperature advection by the total current. Results suggest that the near-annual mode destabilizes the ENSO mode to produce overenergetic quasi-biennial oscillations in the model. It also contributes to the ENSO asymmetry and the cold bias of the CGCM mean state by nonlinear accumulation of temperature zonal advection, which works toward the cold in the western Pacific more than the warm in the east. It is suggested that the model equilibrium results from the interaction between the ENSO mode, the near-annual mode, and the mean state.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...