GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of the American Heart Association, Ovid Technologies (Wolters Kluwer Health), Vol. 8, No. 19 ( 2019-10)
    Abstract: Increasing evidence suggests a psychosomatic link between neural systems and the heart. In light of the growing burden of ischemic cardiovascular disease across the globe, a better understanding of heart‐brain interactions and their implications for cardiovascular treatment strategies is needed. Thus, we sought to investigate the interaction between myocardial injury and metabolic alterations in central neural areas in patients with suspected or known coronary artery disease. Methods and Results The association between resting metabolic activity in distinct neural structures and cardiac function was analyzed in 302 patients (aged 66.8±10.2 years; 70.9% men) undergoing fluor‐18‐deoxyglucose positron emission tomography and 99m Tc‐tetrofosmin single‐photon emission computed tomography myocardial perfusion imaging. There was evidence for reduction of callosal, caudate, and brainstem fluor‐18‐deoxyglucose uptake in patients with impaired left ventricular ejection fraction ( 〈 55% versus ≥55%: P =0.047, P =0.022, and P =0.013, respectively) and/or in the presence of myocardial ischemia (versus normal perfusion: P =0.010, P =0.013, and P =0.016, respectively). In a sex‐stratified analysis, these differences were observed in men, but not in women. A first‐order interaction term consisting of sex and impaired left ventricular ejection fraction or myocardial ischemia was identified as predictor of metabolic activity in these neural regions (left ventricular ejection fraction: P =0.015 for brainstem; myocardial ischemia: P =0.004, P =0.018, and P =0.003 for callosal, caudate, or brainstem metabolism, respectively). Conclusions Myocardial dysfunction and injury are associated with reduced resting metabolic activity of central neural structures, including the corpus callosum, the caudate nucleus, and the brainstem. These associations differ in women and men, suggesting sex differences in the pathophysiological interplay of the nervous and cardiovascular systems.
    Type of Medium: Online Resource
    ISSN: 2047-9980
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2019
    detail.hit.zdb_id: 2653953-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...