GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Hypertension, Ovid Technologies (Wolters Kluwer Health), Vol. 51, No. 5 ( 2008-05), p. 1372-1378
    Abstract: Mineralocorticoid receptor blockade protects from angiotensin II–induced target-organ damage. 11β-Hydroxysteroid dehydrogenase type 2 protects the mineralocorticoid receptor from activation by glucocorticoids; however, high glucocorticoid concentrations and absent 11β-hydroxysteroid dehydrogenase type 2 in some tissues make glucocorticoids highly relevant mineralocorticoid receptor ligands. We investigated the effects of corticosterone (10 −6 to 10 −12 mol/L) on early vascular mineralocorticoid receptor signaling by Western blotting, confocal microscopy, and myography. Corticosterone initiated extracellular signal–regulated kinase 1/2 phosphorylation in rat vascular smooth muscle cells at ≥10 −11 mol/L doses. Protein synthesis inhibitors had no effect, indicating a nongenomic action. Corticosterone also stimulated c-Jun N-terminal kinase, p38, Src, and Akt phosphorylation at 15 minutes and enhanced angiotensin II–induced signaling at 5 minutes. A specific epidermal growth factor receptor blocker, AG1478, as well as the Src inhibitor PP2, markedly reduced corticosterone-induced extracellular signal–regulated kinase 1/2 phosphorylation, as did preincubation of cells with the mineralocorticoid receptor antagonist spironolactone. Silencing mineralocorticoid receptor with small interfering RNA abolished corticosterone-induced effects. Corticosterone (10 −9 mol/L) enhanced phenylephrine-induced contraction of intact aortic rings. These effects were dependent on the intact endothelium, mineralocorticoid receptor, and mitogen-activated protein kinase kinase 1/extracellular signal-regulated kinase signaling. We conclude that corticosterone induces rapid mineralocorticoid receptor signaling in vascular smooth muscle cells that involves mitogen-activated protein kinase kinase/extracellular signal–regulated kinase–dependent pathways. These new mineralocorticoid receptor–dependent signaling pathways suggest that glucocorticoids may contribute to vascular disease via mineralocorticoid receptor signaling, independent of circulating aldosterone.
    Type of Medium: Online Resource
    ISSN: 0194-911X , 1524-4563
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2008
    detail.hit.zdb_id: 2094210-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...