GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2000
    In:  Arteriosclerosis, Thrombosis, and Vascular Biology Vol. 20, No. 8 ( 2000-08), p. 2011-2018
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 20, No. 8 ( 2000-08), p. 2011-2018
    Abstract: Abstract —Conflicting reports exist about the effects of mildly or extensively oxidized low density lipoproteins (LDLs) on the reactivity of human platelets. This platelet response is mainly caused by modification of the protein and lipid moiety, giving rise to very differently modified species with hardly predictable properties. The aim of this study was to prepare oxidized LDL with modifications essentially restricted to the protein moiety and to determine the eventual platelet responses. We treated LDL at 0°C for 10 minutes with a 60- to 1000-fold molar excess of sodium hypochlorite in borate buffer in the presence of the radical scavenger butylated hydroxytoluene. Under these conditions, neither fragmentation of apolipoprotein B-100 nor formation of LDL aggregates was observed, and lipid oxidation products did not exceed the amount present in untreated LDLs. The degree of modification and the respective effects on platelet function were highly reproducible. Hypochlorite-modified LDLs act as strong platelet agonists, inducing morphological changes, dense granule release, and irreversible platelet aggregation. The evoked platelet effects are completely suppressed by inhibitors of the phosphoinositide cycle but not by EDTA or acetylsalicylic acid. Most likely, these effects are transmitted via high-affinity binding to a single class of sites, which does not recognize native or acetylated LDL. Obviously, modified lysines, and the secondary lipid modifications derived from them, are not essential for this interaction. We conclude that bioactive oxidized lipids are not directly involved in the stimulation of platelets by hypochlorite-modified LDLs.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2000
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...