GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 387-387
    Abstract: The clinical translatability of novel drug delivery systems begins with basic scientific breakthroughs. Our recent discovery of the ability of Tumor Treating Fields (TTFields) to potentially and transiently disrupt the blood brain barrier (BBB) using our murine in vitro and in vivo models, led us to validate our findings in a human 3D in vitro model established in our lab. The model consists of primary brain microvascular endothelial cells co-cultured with immortalized perciytes in a transwell system. TTFields are alternating electric fields of low intensity (1-3V/cm) and intermediate frequency (100-300kHz), which are effective and approved for the treatment of glioblastoma (GBM) using 200kHz frequency. Our murine data point out that TTFields could disrupt the BBB optimally at 100kHz. To investigate if TTFields exhibit similar effects in the human cell-based in vitro model, it was subjected to TTFields at various frequencies for 24-96h. Cells were afterwards made to recover for 24-96h. To assess BBB integrity and compromise, transendothelial electrical resistance (TEER) was measured before start of TTFields, immediately after end of TTFields, as well as 24-96h after TTFields. In addition, a permeability assay was performed. Finally, immunofluorescence (IF) staining visualized the effects of TTFields on tight junction protein claudin-5 localization. TTFields application of all investigated frequencies significantly decreased TEER. However, the strongest effects were observed with 100kHz after 72h. IF staining revealed delocalization of claudin-5 from the cell boundaries to the cytoplasm. Restoration of cell integrity was already evident as early as 24h, with complete recovery after 48h. Results using our human 3D in vitro model validated our previous observations from murine in vitro and in vivo models that TTFields could transiently disrupt the BBB. These findings provide fundamental pre-clinical data for translation from bench to bedside. Accordingly, TTFields demonstrate to be a promising novel approach in opening the BBB to facilitate drug delivery for improved treatment of central nervous system diseases including devastating brain tumors such as GBM. Citation Format: Ellaine Salvador, Almuth F. Kessler, Theresa Köppl, Sebastian Schönhärl, Malgorzata Burek, Catherine Tempel Brami, Tali Voloshin, Moshe Giladi, Ralf-Ingo Ernestus, Mario Löhr, Carola Y. Förster, Carsten Hagemann. Blood brain barrier (BBB) disruption by tumor treating fields (TTFields) in a human 3D in vitro model [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 387.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...