GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2007
    In:  Clinical Cancer Research Vol. 13, No. 22 ( 2007-11-15), p. 6827-6833
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 13, No. 22 ( 2007-11-15), p. 6827-6833
    Abstract: Purpose: Aberrant activation of protein kinase Cβ (PKCβ) by pancreatic cancer cells facilitates angiogenesis and tumor cell survival. Targeting PKCβ with enzastaurin, a well-tolerated drug in clinical trials, would be expected to radiosensitize pancreatic tumors through direct antitumor and antivascular effects. Experimental Design: We tested the hypothesis that enzastaurin radiosensitizes pancreatic cancer cells in culture and in vivo through inhibition of PKCβ. We analyzed pancreatic cancer xenografts for growth delay and microvessel density after treatment with enzastaurin, radiation, or both. We determined the effect of radiation and enzastaurin on glycogen synthase kinase 3β, a mediator of cell death in culture and in vivo. Results: At concentrations attained in patients, enzastaurin reduced levels of active PKCβ measured by phosphorylation at Thr500 in culture and in xenografts. Enzastaurin alone did not affect pancreatic cancer cell survival, proliferation, or xenograft growth. However, enzastaurin radiosensitized pancreatic cancer cells in culture by colony formation assay. Enzastaurin alone decreased microvessel density of pancreatic cancer xenografts without appreciable effects on tumor size. When combined with radiation, enzastaurin increased radiation-induced tumor growth delay with a corresponding decrease in microvessel density. Enzastaurin inhibited radiation-induced phosphorylation of glycogen synthase kinase 3β at Ser9 in pancreatic cancer cells in culture and in tumor xenografts, suggesting a possible mechanism for the observed radiosensitization. Conclusions: Enzastaurin inhibits PKCβ in pancreatic cancer cells in culture, enhancing radiation cytotoxicity. Additional antivascular effects of enzastaurin were observed in vivo, resulting in greater radiosensitization. These results provide the rationale for a clinical trial in locally advanced pancreatic cancer combining enzastaurin with radiation.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2007
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...