GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Advances in Materials Science and Engineering Vol. 2022 ( 2022-8-24), p. 1-11
    In: Advances in Materials Science and Engineering, Wiley, Vol. 2022 ( 2022-8-24), p. 1-11
    Abstract: Tribological performances of solid films are studied to improve their application range while retaining the longevity and high accuracy of TiAl alloy. For a ball-on-flat tribopair system, addition of micro/nanosilver improved the tribological behaviors of TiAl-10 wt.% Ag self-lubricating composite (TASC), compared to those of TiAl alloy. Notably, during microstructure evolution of the wear scar cross-section, a large amount of silver migrated from the TASC to the wear scar, and the silver distributions increased. This influx continuously enriched silver on the wear scar cross-section and formed a low-hardness lubrication film. Concurrently, a large amount of wear debris from the dry sliding wear contributed enough refinements to form a high hardness grain refinement layer. The results confirmed the formation of a 0.75 GPa hardness film with solid lubrication on a grain refined layer of 6.86 GPa hardness, resulting in excellent antifriction and wear resistance from 72 min to 90 min of the TASC. These results can help to evaluate the tribological characteristics for their commercial application and can conceptualize possible solutions for TiAl alloy-base components.
    Type of Medium: Online Resource
    ISSN: 1687-8442 , 1687-8434
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2501025-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...