GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Nanomaterials, Hindawi Limited, Vol. 2021 ( 2021-8-26), p. 1-9
    Abstract: The production of zinc oxide nanoparticles (ZnO NPs) utilizing different vegetable extracts (onion, cabbage, carrot, and tomato) was performed in this research owing to its excellency over other methods of synthesis, namely, simplicity, environmental friendliness, and the elimination of harmful compounds. Fresh extracted onion, cabbage, carrot, and tomato of ZnO NPs are characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy. FTIR findings demonstrate that the prepared nanoparticles were observed in the spectrum of 626 cm-1–1219 cm-1 with some other functional groups. Wurtzite hexagonal structure of the prepared ZnO NPs was observed from XRD results. In addition, the prepared nanoparticles were failed into nanoscales (17 nm, 18 nm, 24 nm, and 15 nm) calculated from Scherrer’s equation. Nearly spherical shapes were seen from SEM image for onion and tomato extraction while rod and tube for carrot and cabbage, respectively. Two broad peaks were observed from UV-vis spectroscopy results for each extract. The presence of a wide range of energy bandgaps in the region of 3-4 eV was detected, indicating that ZnO NP material can be employed in metal oxide semiconductor-based systems. The dye-sensitive solar cell based on ZnO NPs has been successfully synthesized, and the efficiency of the device has been evaluated by measuring the current density-voltage behaviour under the presence of artificial sunshine. The increased effectiveness of the manufactured dye-sensitive solar cell is attributable to a large improvement in dye molecular adsorption onto the surface of ZnO NPs. Thus, the usage of the green produced ZnO NPs with creating dye sensitivity solar cell is a simple and viable way for the well-being of our future.
    Type of Medium: Online Resource
    ISSN: 1687-4129 , 1687-4110
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2229480-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...