GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 1996
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 270, No. 3 ( 1996-03-01), p. L368-L375
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 270, No. 3 ( 1996-03-01), p. L368-L375
    Abstract: Administration of interleukin 5 (IL-5) to guinea pigs by tracheal injection was associated with increased recovery of eosinophils and neutrophils from bronchoalveolar lavage (BAL) fluid. The number of eosinophils recovered from BAL fluid increased in a dose-dependent manner from 9 +/- 2 X 10(3)/ml to a plateau of 143 +/- 29 X 10(3)/ml after the administration of recombinant human IL-5 (rhIL-5). Tracheal administration of recombinant guinea pig IL-5 (gpIL-5) also increased eosinophil recovery but was less potent than rhIL-5. Histological analysis confirmed the presence of inflammatory cells in the lung; there were higher grades of inflammation in airway than in parenchymal tissue after gpIL-5 administration. In addition, the histological grade of airway inflammation was greater 24 and 72 h after gpIL-5 administration than it was 6 days after administration. Airway hyperresponsiveness is reported to occur in guinea pigs exposed to rhIL-5 by intraperitoneal cellular production. It is surprising that airway infiltration with eosinophils induced by the topical application of IL-5 was not associated with hyperresponsiveness to substance P, histamine, or platelet-activating factor in intact animals or to methacholine in tracheally perfused lungs. Furthermore, the microvascular leakage induced by substance P was not altered by rhIL-5 administration. These findings indicate that the presence of eosinophils alone is not sufficient for the expression of airway hyperresponsiveness. Our ability to separate eosinophil recruitment and retention in the tissues from airway hyperresponsiveness indicates that these two processes are distinct and that the presence of eosinophils in lung tissue, by itself, is not sufficient to alter airway contractile responses.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1996
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...