GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Canadian Science Publishing ; 1995
    In:  Canadian Journal of Microbiology Vol. 41, No. 2 ( 1995-02-01), p. 126-135
    In: Canadian Journal of Microbiology, Canadian Science Publishing, Vol. 41, No. 2 ( 1995-02-01), p. 126-135
    Abstract: In this study, the potential of different Pseudomonas strains to utilize heterologous siderophores was compared with their competitiveness in the rhizosphere of radish. This issue was investigated in interactions between Pseudomonas putida WCS358 and Pseudomonas fluoresceins WCS374 and in interactions between strain WCS358 and eight indigenous Pseudomonas strains capable of utilizing pseudobactin 358. During four successive plant growth cycles of radish, strain WCS358 significantly reduced rhizosphere population densities of the wild-type strain WCS374 by up to 30 times, whereas derivative strain WCS374(pMR), harboring the siderophore receptor PupA for ferric pseudobactin 358, maintained its population density. Studies involving interactions between strain WCS358 and eight different indigenous Pseudomonas strains demonstrated that despite the ability of these indigenous isolates to utilize pseudobactin 358, their rhizosphere population densities were significantly reduced by strain WCS358 by up to 20 times. Moreover, rhizosphere colonization by WCS358 was not affected by any of these indigenous strains, even though siderophore-mediated growth inhibition of WCS358 by a majority of these strains was demonstrated in a plate bioassay. In conclusion, it can be stated that siderophore-mediated competition for iron is a major determinant in interactions between WCS358 and WCS374 in the rhizosphere. Moreover, our findings support the common assumption that cloning of siderophore receptor genes from one Pseudomonas strain into another can confer a competitive advantage in interactions in the rhizosphere. Interactions between WCS358 and the selected indigenous rhizosphere isolates, however, indicate that other traits also contribute to the rhizosphere competence of fluorescent Pseudomonas spp.Key words: siderophore, siderophore receptors, root colonization, fluorescent Pseudomonas.
    Type of Medium: Online Resource
    ISSN: 0008-4166 , 1480-3275
    RVK:
    Language: English
    Publisher: Canadian Science Publishing
    Publication Date: 1995
    detail.hit.zdb_id: 280534-0
    detail.hit.zdb_id: 1481972-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...