GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 10, No. 2 ( 2022-04-27)
    Abstract: Acanthamoeba species are among the most ubiquitous protists that are widespread in soil and water and act as both a replicative niche and vectors for dispersal. They are the most important human intracellular pathogens, causing Acanthamoeba keratitis (AK) and severely damaging the human cornea. The sympatric lifestyle within the host and amoeba-resisting microorganisms (ARMs) promotes horizontal gene transfer (HGT). However, the genomic diversity of only A. castellanii and A. polyphaga has been widely studied, and the pathogenic mechanisms remain unknown. Thus, we examined 7 clinically pathogenic strains by comparative genomic, phylogenetic, and rhizome gene mosaicism analyses to explore amoeba–symbiont interactions that possibly contribute to pathogenesis. Genetic characterization and phylogenetic analysis showed differences in functional characteristics between the “open” state of T3 and T4 isolates, which may contribute to the differences in virulence and pathogenicity. Through comparative genomic analysis, we identified potential genes related to virulence, such as metalloprotease, laminin-binding protein, and HSP, that were specific to the genus Acanthamoeba . Then, analysis of putative sequence trafficking between Acanthamoeba and Pandoraviruses or Acanthamoeba castellanii medusaviruses provided the best hits with viral genes; among bacteria, Pseudomonas had the most significant numbers. The most parsimonious evolutionary scenarios were between Acanthamoeba and endosymbionts; nevertheless, in most cases, the scenarios are more complex. In addition, the differences in exchanged genes were limited to the same family. In brief, this study provided extensive data to suggest the existence of HGT between Acanthamoeba and ARMs, explaining the occurrence of diseases and challenging Darwin’s concept of eukaryotic evolution. IMPORTANCE Acanthamoeba has the ability to cause serious blinding keratitis. Although the prevalence of this phenomenon has increased in recent years, our knowledge of the underlying opportunistic pathogenic mechanism maybe remains incomplete. In this study, we highlighted the importance of Pseudomonas in the pathogenesis pathway using comprehensive a whole genomics approach of clinical isolates. The horizontal gene transfer events help to explain how endosymbionts contribute Acanthamoeba to act as an opportunistic pathogen. Our study opens up several potential avenues for future research on the differences in pathogenicity and interactions among clinical strains.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...