GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2022
    In:  Applied and Environmental Microbiology Vol. 88, No. 3 ( 2022-02-08)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 88, No. 3 ( 2022-02-08)
    Abstract: Sulfur-oxidizing bacteria can oxidize hydrogen sulfide (H 2 S) to produce sulfur globules. Although the process is common, the pathway is unclear. In recombinant Escherichia coli and wild-type Corynebacterium vitaeruminis DSM 20294 with sulfide:quinone oxidoreductase (SQR) but no enzymes to oxidize zero valence sulfur, SQR oxidized H 2 S into short-chain inorganic polysulfide (H 2 S n , n  ≥ 2) and organic polysulfide (RS n H, n  ≥ 2), which reacted with each other to form long-chain GS n H ( n  ≥ 2) and H 2 S n before producing octasulfur (S 8 ), the main component of elemental sulfur. GS n H also reacted with glutathione (GSH) to form GS n G ( n  ≥ 2) and H 2 S; H 2 S was again oxidized by SQR. After GSH was depleted, SQR simply oxidized H 2 S to H 2 S n , which spontaneously generated S 8 . S 8 aggregated into sulfur globules in the cytoplasm. The results highlight the process of sulfide oxidation to S 8 globules in the bacterial cytoplasm and demonstrate the potential of using heterotrophic bacteria with SQR to convert toxic H 2 S into relatively benign S 8 globules. IMPORTANCE Our results provide evidence of H 2 S oxidation producing octasulfur globules via sulfide:quinone oxidoreductase (SQR) catalysis and spontaneous reactions in the bacterial cytoplasm. Since the process is an important event in geochemical cycling, a better understanding facilitates further studies and provides theoretical support for using heterotrophic bacteria with SQR to oxidize toxic H 2 S into sulfur globules for recovery.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...