GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2013
    In:  Science Translational Medicine Vol. 5, No. 181 ( 2013-04-17)
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 5, No. 181 ( 2013-04-17)
    Abstract: The accuracy with which cancer phenotypes can be predicted by selecting and combining molecular features is compromised by the large number of potential features available. In an effort to design a robust prognostic model to predict breast cancer survival, we hypothesized that signatures consisting of genes that are coexpressed in multiple cancer types should correspond to molecular events that are prognostic in all cancers, including breast cancer. We previously identified several such signatures—called attractor metagenes—in an analysis of multiple tumor types. We then tested our attractor metagene hypothesis as participants in the Sage Bionetworks–DREAM Breast Cancer Prognosis Challenge. Using a rich training data set that included gene expression and clinical features for breast cancer patients, we developed a prognostic model that was independently validated in a newly generated patient data set. We describe our model, which was based on three attractor metagenes associated with mitotic chromosomal instability, mesenchymal transition, or lymphocyte-based immune recruitment.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2013
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...