GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2021
    In:  Science Advances Vol. 7, No. 35 ( 2021-08-27)
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 7, No. 35 ( 2021-08-27)
    Abstract: Quasicrystals are aperiodically ordered structures with unconventional rotational symmetry. Their peculiar features have been explored in photonics to engineer bandgaps for light waves. Magnons (spin waves) are collective spin excitations in magnetically ordered materials enabling non–charge-based information transmission in nanoscale devices. Here, we report on a two-dimensional magnonic quasicrystal formed by aperiodically arranged nanotroughs in ferrimagnetic yttrium iron garnet. By phase-resolved spin wave imaging at gigahertz frequencies, multidirectional emission from a microwave antenna is evidenced, allowing for a quasicontinuous radial magnon distribution, not observed in reference measurements on a periodic magnonic crystal. We observe partial forbidden gaps, which are consistent with analytical calculations and indicate band formation as well as a modified magnon density of states due to backfolding at pseudo-Brillouin zone boundaries. The findings promise as-desired filters and magnonic waveguides reaching out in a multitude of directions of the aperiodic lattice.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...