GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    ASME International ; 2004
    In:  Journal of Turbomachinery Vol. 126, No. 4 ( 2004-10-01), p. 507-518
    In: Journal of Turbomachinery, ASME International, Vol. 126, No. 4 ( 2004-10-01), p. 507-518
    Abstract: This two-part paper presents detailed experimental investigations of unsteady aerodynamic blade row interactions in the four-stage Low-Speed Research Compressor of Dresden. In part I of the paper the unsteady profile pressure distributions for the nominal setup of the compressor are discussed. Furthermore, the effect of blade row clocking on the unsteady profile pressures is investigated. Part II deals with the unsteady aerodynamic blade forces, which are calculated from the measured profile pressure distributions. The unsteady pressure distributions were analyzed in the first, a middle and the last compressor stage both on the rotor and stator blades. The measurements were carried out on pressure side and suction side at midspan. Several operating points were investigated. A complex behavior of the unsteady profile pressures can be observed, resulting from the superimposed influences of the wakes and the potential effects of several up- and downstream blade rows of the four-stage compressor. The profile pressure changes nearly simultaneously along the blade chord if a disturbance arrives at the leading edge or the trailing edge of the blade. Thus the unsteady profile pressure distribution is nearly independent of the convective wake propagation within the blade passage. A phase shift of the reaction of the blade to the disturbance on the pressure and suction side is observed. In addition, clocking investigations were carried out to distinguish between the different periodic influences from the surrounding blade rows. For this reason the unsteady profile pressure distribution on rotor 3 was measured, while stators 1–4 were separately traversed stepwise in the circumferential direction. Thus the wake and potential effects of the up- and downstream blade rows on the unsteady profile pressure could clearly be distinguished and quantified.
    Type of Medium: Online Resource
    ISSN: 0889-504X , 1528-8900
    Language: English
    Publisher: ASME International
    Publication Date: 2004
    detail.hit.zdb_id: 56356-0
    detail.hit.zdb_id: 2010462-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...