GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 1996
    In:  Alcoholism: Clinical and Experimental Research Vol. 20, No. s1 ( 1996-02)
    In: Alcoholism: Clinical and Experimental Research, Wiley, Vol. 20, No. s1 ( 1996-02)
    Abstract: The saturation mechanism of hepatic ethanol (EtOH) elimination was studied in the perfused rat liver. EtOH outflow profiles after the instantaneous administration of 3 (mg/ml) × 0.4 (ml), 12 × 0.1, 24 × 0.1, and 3 × 0.1 mg (as a dose concentration × a volume) through the portal vein were analyzed by the statistical moment analysis and mathematical models (i.e., dispersion models). Results for 3 × 0.1 and 12 × 0.1 mg doses by moment analysis were similar. This demonstrated that the elimination exhibits linear kinetics. Recovery ratio and hepatic volume of distribution for 3 × 0.4 and 24 × 0.1 mg were larger than those for 3 × 0.1 and 12 × 0.1 mg doses and were similar. Kinetics after administration of 3 × 0.4 and 24 × 0.1 mg may be nonlinear. A difference in the relative dispersion ( CV 2 ) obtained by moment analysis between 3 × 0.4 and 24 × 0.1 mg doses indicated different properties of the nonlinear elimination kinetics. There were no differences in all the parameters in the one‐compartment dispersion model between 3 × 0.4 and 24 × 0.1 mg doses. In the two‐compartment dispersion model, there were differences in the blood volume ( V B ) and the forward partition rate constant ( K 12 ) between 3 × 0.4 and 24 × 0.1 mg ( p 〈 0.05), whereas the elimination rate constant ( k e ) and the dispersion number values for these doses were similar. These findings demonstrated that there is difference in the no‐equilibrium process between 3 × 0.4 and 24 × 0.1 mg doses. Therefore, we suggest that the continuous EtOH input into the liver causes the saturation of enzyme pathways and the change of the nonequilibrium process.
    Type of Medium: Online Resource
    ISSN: 0145-6008 , 1530-0277
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 1996
    detail.hit.zdb_id: 2046886-6
    detail.hit.zdb_id: 3167872-5
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...