GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Global Change Biology, Wiley, Vol. 23, No. 4 ( 2017-04), p. 1499-1510
    Abstract: Thermal tolerance windows serve as a powerful tool for estimating the vulnerability of marine species and their life stages to increasing temperature means and extremes. However, it remains uncertain to which extent additional drivers, such as ocean acidification, modify organismal responses to temperature. This study investigated the effects of CO 2 ‐driven ocean acidification on embryonic thermal sensitivity and performance in Atlantic cod, Gadus morhua , from the Kattegat. Fertilized eggs were exposed to factorial combinations of two P CO 2 conditions (400  μ atm vs. 1100  μ atm) and five temperature treatments (0, 3, 6, 9 and 12 °C), which allow identifying both lower and upper thermal tolerance thresholds. We quantified hatching success, oxygen consumption ( M O 2 ) and mitochondrial functioning of embryos as well as larval morphometrics at hatch and the abundance of acid–base‐relevant ionocytes on the yolk sac epithelium of newly hatched larvae. Hatching success was high under ambient spawning conditions (3–6 °C), but decreased towards both cold and warm temperature extremes. Elevated P CO 2 caused a significant decrease in hatching success, particularly at cold (3 and 0 °C) and warm (12 °C) temperatures. Warming imposed limitations to M O 2 and mitochondrial capacities. Elevated P CO 2 stimulated M O 2 at cold and intermediate temperatures, but exacerbated warming‐induced constraints on M O 2 , indicating a synergistic interaction with temperature. Mitochondrial functioning was not affected by P CO 2 . Increased M O 2 in response to elevated P CO 2 was paralleled by reduced larval size at hatch. Finally, ionocyte abundance decreased with increasing temperature, but did not differ between P CO 2 treatments. Our results demonstrate increased thermal sensitivity of cod embryos under future P CO 2 conditions and suggest that acclimation to elevated P CO 2 requires reallocation of limited resources at the expense of embryonic growth. We conclude that ocean acidification constrains the thermal performance window of embryos, which has important implication for the susceptibility of cod to projected climate change.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...