GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Ecography, Wiley, Vol. 40, No. 6 ( 2017-06), p. 719-732
    Abstract: The diversity–stability debate is a long‐standing issue in ecology, asking whether more diverse communities show higher stability over time and more rapid recovery from disturbances. Connection to undisturbed habitats is thought to affect compositional and functional stability after disturbances. Therefore, we established marine phytoplankton metacommunities consisting of three microcosms (local patches), which were connected by tubes opened for different time intervals to create 5 levels of connectivity. We performed two experiments differing by homogeneous (HOM) or heterogeneous (HET) supply of irradiance across patches. As disturbance we either removed 75% of the algal biomass locally from one randomly chosen patch, or 25 or 75% regionally from each local patch. By comparing these treatments to an undisturbed control, we analyzed resilience (rate of recovery) and final recovery (recovery ratio) with regard to biomass (functional stability) and species composition (structural stability). In both experiments (HET, HOM), functional and structural aspects of stability responded significantly to connectivity and disturbance treatments. Functional resilience was enhanced by increasing connectivity (HET and HOM), which partially also increased functional recovery (HET) and structural resilience (HOM). By contrast, the treatment‐induced gradients in diversity (species richness and evenness) had no clear effect on functional resilience or recovery. Instead, structural and functional resilience were strongly correlated regardless of patch quality, indicating that only a full recovery in community composition ensured functional stability. Our findings suggest that connectivity plays a pivotal role in maintaining ecosystem stability under pulse disturbance such that a more complete understanding of stability requires spatially explicit approaches.
    Type of Medium: Online Resource
    ISSN: 0906-7590 , 1600-0587
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2024917-2
    detail.hit.zdb_id: 1112659-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...