GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: British Journal of Pharmacology, Wiley, Vol. 173, No. 21 ( 2016-11), p. 3080-3087
    Abstract: Asthma presents as a heterogeneous syndrome characterized by airway obstruction, inflammation and hyper‐reactivity (AHR). Spleen tyrosine kinase (Syk) mediates allergen‐induced mast cell degranulation, a central component of allergen‐induced inflammation and AHR. However, the role of Syk in IgE‐mediated constriction of human small airways remains unknown. In this study, we addressed whether selective inhibition of Syk attenuates IgE‐mediated constriction and mast cell mediator release in human small airways. Experimental Approach Human precision cut lung slices (hPCLS) ex vivo derived from non‐asthmatic donors were incubated overnight with human IgE, dexamethasone, montelukast, antihistamines or a selective Syk inhibitor (SYKi). High‐affinity IgE receptor (FcεRI) activation by anti‐IgE cross‐linking was performed, and constriction and mediator release measured. Airway constriction was normalized to that induced by maximal carbachol stimulation. Syk expression (determined by qPCR and immunoblot) was also evaluated in human primary airway smooth muscle (HASM) cells to determine whether Syk directly modulates HASM function. Key Results While dexamethasone had little effect on FcεR‐mediated contraction, montelukast or antihistamines partially attenuated the response. SYKi abolished anti‐IgE‐mediated contraction and suppressed the release of mast cell or basophil mediators from the IgE‐treated hPCLS. In contrast, SYKi had little effect on the non‐allergic contraction induced by carbachol. Syk mRNA and protein were undetectable in HASM cells. Conclusions and Implications A selective Syk inhibitor, but not corticosteroids, abolished FcεR‐mediated contraction in human small airways ex vivo . The mechanism involved FcεRI receptor activation on mast cells or basophils that degranulate causing airway constriction, rather than direct actions on HASM.
    Type of Medium: Online Resource
    ISSN: 0007-1188 , 1476-5381
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2029728-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...