GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: British Journal of Pharmacology, Wiley, Vol. 170, No. 4 ( 2013-10), p. 847-858
    Abstract: Clinical studies indicate that statins have a BP ‐lowering effect in hypercholesterolemic individuals with hypertension. Specifically, statins modulate BP through the up‐regulation of endothelial NOS ( eNOS ) activation in the brain. However, the signalling mechanisms through which statins enhance eNOS activation remain unclear. Therefore, we examined the possible signalling pathways involved in statin‐mediated BP regulation in the nucleus tractus solitarii ( NTS ). Experimental Approach To investigate the involvement of Ras and other signalling pathways in simvastatin‐induced effects on BP, BP and renal sympathetic nerve activity ( RSNA ) were determined in spontaneously hypertensive rats ( SHRs ) before and after i.c.v. administration of simvastatin in the absence and presence of a Ras‐specific inhibitor (farnesyl thiosalicylic acid, FTS ), a geranylgeranyltransferase inhibitor ( GGTI ‐2133), a PI3K inhibitor ( LY 294002) or a MAPK ‐ ERK kinase ( MEK ) inhibitor ( PD 98059). Key Results FTS significantly attenuated the decrease in BP and increased NO evoked by simvastatin and reversed the decrease in basal RSNA induced by simvastatin. Immunoblotting and pharmacological studies showed that inhibition of Ras activity by FTS significantly abolished simvastatin‐induced phosphorylation of ERK 1/2, ribosomal protein S6 kinase ( RSK ), A kt and decreased eNOS phosphorylation. Likewise, administration of A kt and ERK 1/2 signalling inhibitors, LY294002 and PD98059, attenuated the reduction in BP evoked by simvastatin. Furthermore, i.c.v. simvastatin decreased Rac1 activation and the number of ROS ‐positive cells in the NTS . Conclusions and Implications Simvastatin modulates central BP control in the NTS of SHRs by increasing Ras‐mediated activation of the PI3K‐Akt and ERK1/2‐RSK signalling pathways, which then up‐regulates eNOS activation.
    Type of Medium: Online Resource
    ISSN: 0007-1188 , 1476-5381
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2013
    detail.hit.zdb_id: 2029728-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...