GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Trauma and Acute Care Surgery, Ovid Technologies (Wolters Kluwer Health), Vol. 88, No. 5 ( 2020-5), p. 579-587
    Abstract: Traumatic injury can lead to a compromised intestinal epithelial barrier, decreased gut perfusion, and inflammation. While recent studies indicate that the gut microbiome (GM) is altered early following traumatic injury, the impact of GM changes on clinical outcomes remains unknown. Our objective of this follow-up study was to determine if the GM is associated with clinical outcomes in critically injured patients. METHODS We conducted a prospective, observational study in adult patients (N = 67) sustaining severe injury admitted to a level I trauma center. Fecal specimens were collected on admission to the emergency department, and microbial DNA from all samples was analyzed using the Quantitative Insights Into Microbial Ecology pipeline and compared against the Greengenes database. α-Diversity and β-diversity were estimated using the observed species metrics and analyzed with t tests and permutational analysis of variance for overall significance, with post hoc pairwise analyses. RESULTS Our patient population consisted of 63% males with a mean age of 44 years. Seventy-eight percent of the patients suffered blunt trauma with 22% undergoing penetrating injuries. The mean body mass index was 26.9 kg/m 2 . Significant differences in admission β-diversity were noted by hospital length of stay, intensive care unit hospital length of stay, number of days on the ventilator, infections, and acute respiratory distress syndrome ( p 〈 0.05). β-Diversity on admission differed in patients who died compared with patients who lived (mean time to death, 8 days). There were also significantly less operational taxonomic units in samples from patients who died versus those who survived. A number of species were enriched in the GM of injured patients who died, which included some traditionally probiotic species such as Akkermansia muciniphilia , Oxalobacter formigene s, and Eubacterium biforme ( p 〈 0.05). CONCLUSION Gut microbiome diversity on admission in severely injured patients is predictive of a variety of clinically important outcomes. While our study does not address causality, the GM of trauma patients may provide valuable diagnostic and therapeutic targets for the care of injured patients. LEVEL OF EVIDENCE Prognostic and epidemiological, level III.
    Type of Medium: Online Resource
    ISSN: 2163-0763 , 2163-0755
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    detail.hit.zdb_id: 2651313-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...