GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Publications of the Astronomical Society of Japan, Oxford University Press (OUP), Vol. 73, No. 5 ( 2021-10-04), p. 1209-1224
    Abstract: We report photometric and spectroscopic observations of the eclipsing SU UMa-type dwarf nova ASASSN-18aan. We observed the 2018 superoutburst with 2.3 mag brightening and found the orbital period (Porb) to be 0.149454(3) d, or 3.59 hr. This is longward of the period gap, establishing ASASSN-18aan as one of a small number of long-Porb SU UMa-type dwarf novae. The estimated mass ratio, [q = M2/M1 = 0.278(1)], is almost identical to the upper limit of tidal instability by the 3 : 1 resonance. From eclipses, we found that the accretion disk at the onset of the superoutburst may reach the 3 : 1 resonance radius, suggesting that the superoutburst of ASASSN-18aan results from the tidal instability. Considering the case of long-Porb WZ Sge-type dwarf novae, we suggest that the tidal dissipation at the tidal truncation radius is enough to induce SU UMa-like behavior in relatively high-q systems such as SU UMa-type dwarf novae, but that this is no longer effective in low-q systems such as WZ Sge-type dwarf novae. The unusual nature of the system extends to the secondary star, for which we find a spectral type of G9, much earlier than typical for the orbital period, and a secondary mass M2 of around 0.18 M⊙, smaller than expected for the orbital period and the secondary’s spectral type. We also see indications of enhanced sodium abundance in the secondary’s spectrum. Anomalously hot secondaries are seen in a modest number of other CVs and related objects. These systems evidently underwent significant nuclear evolution before the onset of mass transfer. In the case of ASASSN-18aan, this apparently resulted in a mass ratio lower than typically found at the system’s Porb, which may account for the occurrence of a superoutburst at this relatively long period.
    Type of Medium: Online Resource
    ISSN: 0004-6264 , 2053-051X
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2206640-8
    detail.hit.zdb_id: 2083084-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...