GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 24, No. 10 ( 2022-10-03), p. 1660-1670
    Abstract: Cognitive impairment is a common and debilitating symptom in patients with diffuse glioma, and is the result of multiple factors. We hypothesized that molecular tumor characteristics influence neurocognitive functioning (NCF), and aimed to identify tumor-related markers of NCF in diffuse glioma patients. Methods We examined the relation between cognitive performance (executive function, memory, and psychomotor speed) and intratumoral expression levels of molecular markers in treatment-naive patients with diffuse glioma. We performed a single-center study in a consecutive cohort, through a two-step design: (1) hypothesis-free differential expression and gene set enrichment analysis to identify candidate oncogenetic markers for cognitive impairment. Nineteen molecular markers of interest were derived from this set of genes, as well as from prior knowledge; (2) correlation of cognitive performance to intratumoral expression levels of these nineteen molecular markers, measured with immunohistochemistry. Results From 708 included patients with immunohistochemical data, we performed an in-depth analysis of neuropsychological data in 197, and differential expression analysis in 65 patients. After correcting for tumor volume and location, we found significant associations between expression levels of CD3 and IDH-1 and psychomotor speed; between IDH-1, ATRX, NLGN3, BDNF, CK2Beta, EAAT1, GAT-3, SRF, and memory performance; and between IDH-1, P-STAT5b, NLGN3, CK2Beta, and executive functioning. P-STAT5b, CD163, CD3, and Semaphorin-3A were independently associated after further correction for histopathological grade. Conclusion Molecular characteristics of glioma can be independent determinants of patients’ cognitive functioning. This suggests that besides tumor volume, location, and histological grade, variations in glioma biology influence cognitive performance through mechanisms that include perturbation of neuronal communication. These results pave the way towards targeted cognition improving therapies in neuro-oncology.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...