GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Neuro-Oncology Vol. 22, No. Supplement_3 ( 2020-12-04), p. iii400-iii400
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 22, No. Supplement_3 ( 2020-12-04), p. iii400-iii400
    Abstract: Medulloblastoma (MB) is the most common malignant childhood brain tumor. MB can be divided into four major subgroups – WNT, Sonic hedgehog (SHH), Group 3 (G3), and Group 4 (G4) – that exhibit distinct genetic alterations, gene expression profiles, and clinical outcomes. Patients with G3-MB have the worst prognosis, and a deeper understanding of this disease is critical for development of new therapies. Most G3-MBs express high levels of the MYC oncogene, suggesting that MYC plays an important role in tumorigenesis. To identify genes that cooperate with MYC to promote formation of G3-MB, we performed an in vivo mutagenesis screen using mice expressing the Sleeping Beauty (SB) transposon. Cerebellar stem cells from transposon/transposase-expressing mice were infected with viruses encoding Myc, and transplanted into the cerebellum of adult hosts. The resulting tumors were sequenced to identify transposon-targeted genes, and these genes were functionally analyzed to determine whether they could cooperate with Myc to drive G3-MB. These studies identified the transcription factor Ras-responsive element binding protein 1 (Rreb1) as a potent Myc-cooperating gene. Tumors driven by Myc and Rreb1 resemble G3-MB at a histological and molecular level. Moreover, RREB1 is overexpressed in human G3-MB, and knockdown of RREB1 impairs growth of G3-MB cell lines and patient-derived xenografts. Ongoing studies are aimed at identifying the mechanisms by which Rreb1 contributes to tumor growth. Our studies demonstrate an important role for RREB1 in G3-MB, and provide a new model that can be used to identify therapeutic targets and develop more effective therapies for medulloblastoma.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...