GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Plasma Science and Technology, IOP Publishing, Vol. 25, No. 3 ( 2023-03-01), p. 035510-
    Abstract: Sulfamethoxazole (SMX) is an antibiotic and widely present in aquatic environments, so it presents a serious threat to human health and sustainable development. A dielectric barrier discharge (DBD) plasma jet was utilized to degrade aqueous SMX, and the effects of various operating parameters (working gas, discharge power, etc) on SMX degradation performance were studied. The experimental results showed that the DBD plasma jet can obtain a relatively high degradation efficiency for SMX when the discharge power is high with an oxygen atmosphere, the initial concentration of SMX is low, and the aqueous solution is under acidic conditions. The reactive species produced in the liquid phase were detected, and OH radicals and O 3 were found to play a significant role in the degradation of SMX. Moreover, the process of SMX degradation could be better fitted by the quasi-first-order reaction kinetic equation. The analysis of the SMX degradation process indicated that SMX was gradually decomposed and 4-amino benzene sulfonic acid, benzene sulfonamide, 4-nitro SMX, and phenylsulfinyl acid were detected, and thus three possible degradation pathways were finally proposed. The mineralization degree of SMX reached 90.04% after plasma treatment for 20 min, and the toxicity of the solution fluctuated with the discharge time but eventually decreased.
    Type of Medium: Online Resource
    ISSN: 1009-0630
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 2240796-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...