GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1979
    In:  Proceedings of the National Academy of Sciences Vol. 76, No. 6 ( 1979-06), p. 2740-2744
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 76, No. 6 ( 1979-06), p. 2740-2744
    Abstract: The tactoidal state in systems containing long, rod-like molecules consists of partially aligned solute molecules in equilibrium with and at a concentration not much higher than that in the conjugate isotropic phase. Under the liquid lattice model of Flory [ Proc. R. Soc. London Ser. A , (1956) 234, 73-89], as well as under other models, tactoid formation by molecules of fixed axial ratio depends on nonideality induced by excluded volumes; the process is wholly entropy driven and requires no direct interactions between rods. Many rod-like biological polymers exhibit reversible polymerization, so that axial ratio and length are not fixed. Polymerization and rod length will then not only induce nonideality, alignment, and phase separation, but will be affected by these. In this work these interrelations are treated under the model of Flory, modified to include a free energy of polymerization and to permit reversible changes in rod length. The primary conclusion is that, in contrast to the situation for fixed lengths, excluded volume-dependent nonideality alone does not suffice to induce a tactoidal phase separation. In the absence of attractions or repulsions between rods the anisotropic phase is highly concentrated. This phase only becomes tactoidal when a minimal level of repulsive interaction between rods is reached. Under this model, tactoid formation in systems such as deoxygenated hemoglobin S and tobacco mosaic virus depends on repulsive interactions or metastability or both. As a secondary result it is shown that rod length in the anisotropic phase is much greater than in the conjugate isotropic phase.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1979
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...