GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 49 ( 2007-12-04), p. 19333-19338
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 49 ( 2007-12-04), p. 19333-19338
    Abstract: cAMP is well known to regulate exocytosis in various secretory cells, but the precise mechanism of its action remains unknown. Here, we examine the role of cAMP signaling in the exocytotic process of insulin granules in pancreatic beta cells. Although activation of cAMP signaling alone does not cause fusion of the granules to the plasma membrane, it clearly potentiates both the first phase (a prompt, marked, and transient increase) and the second phase (a moderate and sustained increase) of glucose-induced fusion events. Interestingly, all granules responsible for this potentiation are newly recruited and immediately fused to the plasma membrane without docking ( restless newcomer ). Importantly, cAMP-potentiated fusion events in the first phase of glucose-induced exocytosis are markedly reduced in mice lacking the cAMP-binding protein Epac2 ( Epac2 ko/ko ). In addition, the small GTPase Rap1, which is activated by cAMP specifically through Epac2 in pancreatic beta cells, mediates cAMP-induced insulin secretion in a protein kinase A-independent manner. We also have developed a simulation model of insulin granule movement in which potentiation of the first phase is associated with an increase in the insulin granule density near the plasma membrane. Taken together, these data indicate that Epac2/Rap1 signaling is essential in regulation of insulin granule dynamics by cAMP, most likely by controlling granule density near the plasma membrane.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...