GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    CSIRO Publishing ; 2006
    In:  Functional Plant Biology Vol. 33, No. 5 ( 2006), p. 457-
    In: Functional Plant Biology, CSIRO Publishing, Vol. 33, No. 5 ( 2006), p. 457-
    Abstract: Allocation of root-derived resources is influenced by tissue demand; however, vascular pathways mediate resource flow from roots to shoots. In vascularly constrained plants (i.e. sectored plants), effects of vascular connections likely limit homogenous resource delivery, especially when environmental resource distribution is patchy. Here, we quantify relative roles of vascular connections, demands by different leaves (i.e. by leaf age and size), and molecule size of transported N compounds (effective sectoriality: nitrate v. ammonium) on allocation of 15N in the sectored tomato (Solanum lycopersicum L.). Vascular connections were the strongest predictor of both accumulation (amount per leaf; P 〈 0.0001) and δ (estimate of concentration; P 〈 0.0001) 15N values in mature leaves, but young expanding leaves did not show such dramatically sectored uptake (accumulation: P=0.0685; δ: P=0.0455), suggesting that sectoriality is less strong in young expanding tissue, especially in the youngest leaf. In patchy environments sectoriality, then, should have large consequences for the ability of a plant to allocate resources in mature tissue; however, young leaves do not appear to experience such strong vascular constraints when building new tissue.
    Type of Medium: Online Resource
    ISSN: 1445-4408
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2006
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...