GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  Applied Physics Reviews Vol. 9, No. 3 ( 2022-09-01)
    In: Applied Physics Reviews, AIP Publishing, Vol. 9, No. 3 ( 2022-09-01)
    Abstract: Photonic integrated circuits (PICs) based on lithographically patterned waveguides provide a scalable approach for manipulating photonic bits, enabling seminal demonstrations of a wide range of photonic technologies with desired complexity and stability. While the next generation of applications such as ultra-high speed optical transceivers, neuromorphic computing and terabit-scale communications demand further lower power consumption and higher operating frequency. Complementing the leading silicon-based material platforms, the third-generation semiconductor, silicon carbide (SiC), offers a significant opportunity toward the advanced development of PICs in terms of its broadest range of functionalities, including wide bandgap, high optical nonlinearities, high refractive index, controllable artificial spin defects and complementary metal oxide semiconductor-compatible fabrication process. The superior properties of SiC have enabled a plethora of nano-photonic explorations, such as waveguides, micro-cavities, nonlinear frequency converters and optically-active spin defects. This remarkable progress has prompted the rapid development of advanced SiC PICs for both classical and quantum applications. Here, we provide an overview of SiC-based integrated photonics, presenting the latest progress on investigating its basic optoelectronic properties, as well as the recent developments in the fabrication of several typical approaches for light confinement structures that form the basic building blocks for low-loss, multi-functional and industry-compatible integrated photonic platform. Moreover, recent works employing SiC as optically-readable spin hosts for quantum information applications are also summarized and highlighted. As a still-developing integrated photonic platform, prospects and challenges of utilizing SiC material platforms in the field of integrated photonics are also discussed.
    Type of Medium: Online Resource
    ISSN: 1931-9401
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2265524-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...