GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Applied Physics, AIP Publishing, Vol. 115, No. 17 ( 2014-05-07)
    Abstract: This paper reports a systematic investigation on the structural and magnetic properties of Fe2Cr1−xCoxSi Heusler alloys with various compositions of x by co-sputtering Fe2CrSi and Fe2CoSi targets and their applications in magnetic tunnel junctions (MTJs). Fe2Cr1−xCoxSi films of high crystalline quality have been epitaxially grown on MgO substrate using Cr as a buffer layer. The L21 phase can be obtained at x = 0.3 and 0.5, while B2 phase for the rest compositions. A tunnel magnetoresistance (TMR) ratio of 19.3% at room temperature is achieved for MTJs using Fe2Cr0.3Co0.7Si as the bottom electrode with 350 °C post-annealing. This suggests that the Fermi level in Fe2Cr1−xCoxSi has been successfully tuned close to the center of band gap of minority spin with x = 0.7 and therefore better thermal stability and higher spin polarization are achieved in Fe2Cr0.3Co0.7Si. The post-annealing effect for MTJs is also studied in details. The removal of the oxidized Fe2Cr0.3Co0.7Si at the interface with MgO barrier is found to be the key to improve the TMR ratio. When the thickness of the inserted Mg layer increases from 0.3 to 0.4 nm, the TMR ratio is greatly enhanced from 19.3% to 28%.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...