GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Physics of Plasmas, AIP Publishing, Vol. 19, No. 2 ( 2012-02-01)
    Abstract: Linear gyrokinetic simulations are performed based on a high collisionality NSTX discharge that is part of dimensionless confinement scaling studies. In this discharge, the microtearing mode is predicted to be unstable over a significant region of the plasma (r/a = 0.5–0.8), motivating comprehensive tests to verify the nature of the mode and how it scales with physical parameters. The mode is found to be destabilized with sufficient electron temperature gradient, collisionality, and beta, consistent with previous findings and simple theoretical expectations. Consistent with early slab theories, growth rates peak at a finite ratio of electron-ion collision frequency over mode frequency, νe/i/ω ∼ 1–6. Below this peak, the mode growth rate decreases with reduced collisionality, qualitatively consistent with global confinement observations. Also, in this region, increased effective ionic charge (Zeff) is found to be destabilizing. Experimental electron beta and temperature gradients are two to three times larger than the inferred linear thresholds. Increasing magnetic shear (s) and decreasing safety factor (q) are both destabilizing for ratios around the experimental values s/q = 0.6–1.3. Both the Zeff and s/q scaling are opposite to those expected for the ETG instability offering an opportunity to experimentally distinguish the two modes. Finally, we note that the kinetic ballooning mode is found to compete with the microtearing mode at outer locations r/a ≥ 0.8.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...