GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 1994
    In:  Journal of Applied Physics Vol. 75, No. 12 ( 1994-06-15), p. 7847-7851
    In: Journal of Applied Physics, AIP Publishing, Vol. 75, No. 12 ( 1994-06-15), p. 7847-7851
    Abstract: The failure mechanism of the TiN/TiSi2 bilayers as diffusion barriers between Cu and n+Si was investigated. The TiN/TiSi2 bilayers were formed by either annealing Ti (50 nm)/n+Si via various rapid thermal processes or reactively sputtering TiN (50 nm) on TiSi2. The degradation study of the Cu/TiN/TiSi2/n+Si contact system was undertaken by scanning electron microscopy, cross-section transmission electron microscopy (XTEM), secondary-ion-mass spectrometry (SIMS), and diode leakage current and contact resistance measurements. Leakage current measurements indicated no deterioration of n+-p diode junctions up to 475 °C for 30 min in a N2 ambient. For the sintering temperature at 500 °C, the leakage current increased abruptly and SIMS profiles revealed a large amount of Cu atoms diffusing into the junctions of n+-p diodes. XTEM showed that the small pyramidal-shaped Cu3Si crystallite (with a size 0.25 μm) precipitated in the n+Si substrate. The formation of Cu3Si increased the occupied volume, then generated the gap between TiSi2 and n+Si, and gradually increased the specific contact resistance. The diffusion resistance, depending on the thickness of TiN film, was also observed.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 1994
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...