GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2023
    In:  Journal of Materials Chemistry A Vol. 11, No. 26 ( 2023), p. 14257-14264
    In: Journal of Materials Chemistry A, Royal Society of Chemistry (RSC), Vol. 11, No. 26 ( 2023), p. 14257-14264
    Abstract: There are still great challenges in developing single atom materials with high catalytic activity for the hydrogen evolution reaction (HER). The synergistic effect between adjacent single atom sites due to the high site density is still unclear. Herein, a MOF-derived strategy is proposed based on inkjet printing technology to synthesize carbon foam supported adjacent Co single atom sites (Co–N/CMF-20) as a self-supporting electrode for the HER. The features of inkjet printing with direct writing and computer control help to reduce the formation of clusters or nanoparticles, thus endowing the self-supporting electrode with high atomic site density. The results show that the single atoms are close to each other, thus forming adjacent but dispersed Co sites. Density functional theory calculations suggest that the synergistic effect between adjacent single atoms creates favorable charge transfer and moderate binding with HER intermediates, thus leading to enhanced catalytic activity. As a result, Co–N/CMF-20 affords 10 mA cm −2 current density with low overpotentials of 41.3 and 59.6 mV in acidic and alkaline HERs, respectively, highlighting the superiority of the adjacent site effect. This work provides a new insight for the synthesis of self-supporting single atom catalysts.
    Type of Medium: Online Resource
    ISSN: 2050-7488 , 2050-7496
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 2702232-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...