GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Sustainable Energy & Fuels, Royal Society of Chemistry (RSC), Vol. 7, No. 20 ( 2023), p. 5147-5155
    Abstract: High-voltage overhead transmission lines are in the wilderness and affected by environmental wind all year round. Prolonged wind vibrations can damage transmission lines. Herein, a method for remote online monitoring of ambient wind speed is presented based on a self-powered system of an electromagnetic-triboelectric hybrid generator. The wind monitoring-electromagnetic-triboelectric hybrid generator (WM-ETHG) we designed was driven by ambient wind. The upper-layer triboelectric nanogenerator and lower-layer electromagnetic generator worked simultaneously without interference. With a peak power of 18.45 W m −2 , the WM-ETHG could power a microcontroller unit, signal-processing module and energy-management module for extended periods of time through a power-management circuit. The WM-ETHG could achieve a voltage frequency from 7 Hz to 70 Hz within wind speeds of 3–15 m s −1 , with a high goodness of fit ( R 2 = 0.996). Finally, the cumulative duration of the wind vibration of transmission lines was recorded and analyzed using the WM-ETHG with an in-house-developed single-chip computer program. This work provides a new strategy for monitoring the wind vibration of transmission lines under continuous and stable wind speed using TENG technology. Such technology could be applied in power grids for a long time.
    Type of Medium: Online Resource
    ISSN: 2398-4902
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 2882651-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...