GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2023
    In:  Journal of Materials Chemistry A Vol. 11, No. 8 ( 2023), p. 4272-4279
    In: Journal of Materials Chemistry A, Royal Society of Chemistry (RSC), Vol. 11, No. 8 ( 2023), p. 4272-4279
    Abstract: Solid electrolytes have attracted considerable interest as next-generation materials for lithium-ion batteries because their chemical stability is incomparably higher than that of conventional liquid-phase electrolytes. However, the issue of slow Li + diffusion, even in advanced halide-type electrolytes, still needs to be resolved. Here, we report the design of ultrafast diffusion channels for Li ions through optimal aliovalent doping (Fe 2+ ) of the halide electrolyte with a chloride framework. Both first-principles density functional theory calculations and ab initio molecular dynamics simulations consistently demonstrate that the proposed material has high chemical stability and high Li-ion conductivity. We noted that the Fe dopant creates multichannels for Li ion diffusion, which is ascribed to the favorable regulation of electrostatic interaction with the concertedly moving Li ions. Our calculations indicate that the ionic conductivity of the proposed material is up to 2.72 mS cm −1 , which is a very competitive value considering that conventional organic ionic conductors show values around 1.0 mS cm −1 . We clearly unveil the underlying mechanism of outstanding performance, which is cost-effective and may be used for fabricating even better solid electrolytes.
    Type of Medium: Online Resource
    ISSN: 2050-7488 , 2050-7496
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 2702232-8
    detail.hit.zdb_id: 2696984-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...