GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Materials Chemistry A, Royal Society of Chemistry (RSC), Vol. 11, No. 11 ( 2023), p. 5540-5547
    Abstract: Sodium super ionic conductor (NASICON)-structured Na 3 V 2 (PO 4 ) 2 F 3 (NVPF) is a promising cathode for application in sodium-ion batteries (SIBs) because of its high working potential (3.7 V and 4.2 V vs. Na/Na + ) and structural stability. Nonetheless, interfacial instability deteriorates its electrochemical performance. Therefore, to overcome this limitation, we introduced a sodium polyacrylate (NaPAA) binder for NVPF cathodes. The NaPAA binder effectively suppresses electrolyte decomposition by uniformly covering NVPF particles. Furthermore, the sodium carboxylate group of R–COONa in the NaPAA binder can react with the HPO 2 F 2 intermediate generated by the hydrolysis of NaPF 6 and be converted into R–COOH and NaPO 2 F 2 via the displacement of Na + by H + . This results in the formation of a stable and Na-ion conductive NaPO 2 F 2 -rich cathode–electrolyte interphase (CEI) layer. In addition, the NaPAA-based electrode exhibits desirable cycling and rate performances compared to those of conventional poly(vinylidene difluoride)-based electrodes. This study provides new insights into the design of CEI layers by introducing chemical functional groups in the binder for high-performance SIB cathodes.
    Type of Medium: Online Resource
    ISSN: 2050-7488 , 2050-7496
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 2702232-8
    detail.hit.zdb_id: 2696984-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...