GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2022
    In:  Sustainable Energy & Fuels Vol. 6, No. 6 ( 2022), p. 1616-1624
    In: Sustainable Energy & Fuels, Royal Society of Chemistry (RSC), Vol. 6, No. 6 ( 2022), p. 1616-1624
    Abstract: In this work, jet fuel range high-density polycycloalkanes, dicyclohexylmethane and dodecahydrofluorene, were first synthesized by a two-step method with vanillin and cyclohexanone, two platform compounds that can be derived from lignin. In the first step, 2-(4-hydroxy-3-methoxybenzylidene)cyclohexan-1-one, a jet fuel range C 13 polycycloalkane precursor, was obtained through an acid-catalyzed aldol condensation reaction between vanillin and cyclohexanone over a series of titanium dioxide based nanometer material catalysts. Among them, sulfated titania nanofibers (STNFs) exhibited the highest activity. Over them, a high yield (81%) of 2-(4-hydroxy-3-methoxybenzylidene)cyclohexan-1-one was obtained after the reaction was carried out at 423 K for 10 h. On the basis of the characterization results, the good performance of the STNF catalyst can be attributed to its higher acid strength and higher Brønsted to Lewis acid site ratio. Subsequently, the aldol condensation product was further converted to a mixture of dicyclohexylmethane and dodecahydrofluorene by hydrodeoxygenation (HDO) under the co-catalysis of Pd/C and H-Y zeolite. According to our measurement, the cycloalkane mixture as obtained from the HDO process has a higher density (0.95 g mL −1 ) and lower freezing point (256 K). As a potential application, it can be blended into low freezing point jet fuels to improve their volumetric heat values.
    Type of Medium: Online Resource
    ISSN: 2398-4902
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2022
    detail.hit.zdb_id: 2882651-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...