GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nanoscale, Royal Society of Chemistry (RSC), Vol. 6, No. 17 ( 2014), p. 10134-10139
    Abstract: We experimentally investigate the protection of electron spin coherence of a nitrogen-vacancy (NV) centre in diamond by dynamic nuclear spin polarization (DNP). The electron spin decoherence of an NV centre is caused by the magnetic field fluctuation of the 13 C nuclear spin bath, which contributes large thermal fluctuation to the centre electron spin when it is in an equilibrium state at room temperature. To address this issue, we continuously transfer the angular momentum from electron spin to nuclear spins, and pump the nuclear spin bath to a polarized state under the Hartmann–Hahn condition. The bath polarization effect is verified by the observation of prolongation of the electron spin coherence time ( T *2). Optimal conditions for the DNP process, including the pumping pulse duration and repeat numbers, are proposed by numerical simulation and confirmed by experiment. We also studied the depolarization effect of laser pulses. Our results provide a new route for quantum information processing and quantum simulation using the polarized nuclear spin bath.
    Type of Medium: Online Resource
    ISSN: 2040-3364 , 2040-3372
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2014
    detail.hit.zdb_id: 2515664-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...