GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1996
    In:  Journal of Geophysical Research: Space Physics Vol. 101, No. A12 ( 1996-12), p. 27483-27497
    In: Journal of Geophysical Research: Space Physics, American Geophysical Union (AGU), Vol. 101, No. A12 ( 1996-12), p. 27483-27497
    Abstract: Large‐scale fluctuations in the solar wind plasma upstream of the heliospheric termination shock (TS) will cause inward and outward motions of the shock. Using numerical techniques, we extend an earlier, strictly one‐dimensional (planar) analytic gasdynamic model [ Barnes , 1993] to spherical symmetry to investigate the features of global behavior of shock motion. Our starting point is to establish a steady numerical solution of the gasdynamic equations describing the interaction between the solar wind and the interstellar medium. We then introduce disturbances of the solar wind dynamic pressure at an inner boundary and follow the subsequent evolution of the system, especially the motion of the termination shock. Our model solves spherically symmetric gasdynamic equations as an initial‐boundary value problem. The equations in conservative form are solved using a fully implicit total variation diminishing (TVD) upwind scheme with Roe‐type Riemann solver. Boundary conditions are given by the solar wind parameters on an inner spherical boundary, where they are allowed to vary with time for unsteady calculations and by a constant pressure (roughly simulating the effect of the local interstellar medium) on an outer boundary. We find that immediately after the interaction, the shock moves with speeds given by the earlier analogous analytic models. However, as the termination shock propagates, it begins to slow down, seeking a new equilibrium position. In addition, the disturbance transmitted through the TS, either a shock or rarefaction wave, will encounter the outer boundary and be reflected back. The reflected signal will encounter the TS, causing it to oscillate. The phenomenon may be repeated for a number of reflections, resulting in a “ringing” of the outer heliosphere.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 161666-3
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...