GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Data Mining and Knowledge Discovery Vol. 34, No. 6 ( 2020-11), p. 1642-1675
    In: Data Mining and Knowledge Discovery, Springer Science and Business Media LLC, Vol. 34, No. 6 ( 2020-11), p. 1642-1675
    Abstract: Science teams for rover-based planetary exploration missions like the Mars Science Laboratory Curiosity rover have limited time for analyzing new data before making decisions about follow-up observations. There is a need for systems that can rapidly and intelligently extract information from planetary instrument datasets and focus attention on the most promising or novel observations. Several novelty detection methods have been explored in prior work for three-channel color images and non-image datasets, but few have considered multispectral or hyperspectral image datasets for the purpose of scientific discovery. We compared the performance of four novelty detection methods—Reed Xiaoli (RX) detectors, principal component analysis (PCA), autoencoders, and generative adversarial networks (GANs)—and the ability of each method to provide explanatory visualizations to help scientists understand and trust predictions made by the system. We show that pixel-wise RX and autoencoders trained with structural similarity (SSIM) loss can detect morphological novelties that are not detected by PCA, GANs, and mean squared error autoencoders, but that the latter methods are better suited for detecting spectral novelties—i.e., the best method for a given setting depends on the type of novelties that are sought. Additionally, we find that autoencoders provide the most useful explanatory visualizations for enabling users to understand and trust model detections, and that existing GAN approaches to novelty detection may be limited in this respect.
    Type of Medium: Online Resource
    ISSN: 1384-5810 , 1573-756X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1386325-3
    detail.hit.zdb_id: 1479890-6
    SSG: 24,1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...